926A.N.DRANISHNIKOV,STEVENC.FERRY,ANDSHMUELWEINBERGERsequences
+1(M;Zm) (M) (M)KO→KO→KO
f f f
+1(X;Zm) (X) (X)KO→KO→KO
thatf (α)=0.TheL-theorystatementinTheorem2nowfollowsfromthe
1factthatKO[1]=L(e)[].
4.TheproofofTheoremA
Webeginbystatingsomede nitions.
De nition4.1.
(i)Amapf:X→YbetweenmetricspacesissaidtobecoarseLipschitz
ifthereareconstantsCandDsothatdY(f(x),f(x ))<CdX(x,x )wheneverdX(x,x )>D.NoticethatcoarseLipschitzmapsarenotnecessarilycontinuous.Infact,ifdiamX<∞,everymapde nedonXiscoarseLipschitz.
(ii)Amapf:X→YiscoarselyproperifforeachboundedsetB Y,
f 1(B)hascompactclosureinX.
ThefollowingcorollaryconstructstheRiemannianmanifoldsappearinginallofourmaintheorems.
Proposition4.2.IfXisthecell-likeimageofacompactmanifoldandnisgiven,thenforsomesuitablechoiceofweights,cXisuniformlyn-connected.
Proof.TheCEimageofanycompactANR(absoluteneighborhoodre-tract)islocallyn-connectedforalln,sothepropositionfollowsfromLemma
2.2.See[19]forreferences.
Corollary4.3.Letf:Sk 1→Xbeacell-likemap.ThenRkhasauniformlycontractibleRiemannianmetricwhichiscoarselyequivalenttocX,wheretheconeisweightedasinProposition4.2.
Proof.Considercf:cSk 1→cX.ThisinducesapseudometriconRk.Thebasicliftingpropertyforcell-likemaps(see[19])showsthatRkwiththispseudometricisuniformlyn-connectedifandonlyifcXis.Ifn≥k 1,thismeansthattheinducedpseudometriconRkisuniformlycontractible.Adding anysu cientlysmallmetrictothispseudometric—themetricfromRk~=Dk
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(8)全文阅读和word下载服务。
相关推荐: