Abstract. We study the distribution of spacings between squares modulo q, where q is square-free and highly composite, in the limit as the number of prime factors of q goes to infinity. We show that all correlation functions are Poissonian, which among oth
16¨KURLBERGANDZEEV´RUDNICKPAR
Proof.Wehavethat
1Rr(C,q)=N h∈sC∩Zr 1N(h,q)
BytheChineseRemainderTheorem,
N(h,q)=N(h,p)
p|q
Werewriteformula(4.3)intheform
N(h,p)=
where
(h,p)=2r reff(h)
Thuswe nd
(5.3)p+a(h,p) (h,p)2r
q q (h,q) a(h,c)qa(h,c) (h,c)=)N(h,q)= (h,2rω(q)c2rω(q)ccc|qc|q
Inserting(5.3)wegetaformulaforRr(C,q):RecallingthatN=q/s,
s 1 q(5.4)Rr(C,q)=rω(q) (h,)a(h,c) (h,c)2ch∈sCcc|qq)=Nextweusetheexpression(4.19)for (h,p)towrite (h, p|q/c (h,p)intheform
q(p)(p)(5.5) (h,)=λ()δ(h,)=λ(G)δ(h,G)cq(p)(p)p|GG= p|qG(p),oneforwherethesumisoveralltuplesofset-partitionsG= p|q
eachprimedividingq,andweputforeachsuchtupleG λ(G):=λ((p))
p|q
and
δ(h,G):=
p|q
1h∈HG(p)(p)δ(h,)=0otherwisemodpforallp|q
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(20)全文阅读和word下载服务。
相关推荐: