Abstract. We study the distribution of spacings between squares modulo q, where q is square-free and highly composite, in the limit as the number of prime factors of q goes to infinity. We show that all correlation functions are Poissonian, which among oth
10¨KURLBERGANDZEEV´RUDNICKPAR
4.Theprimecase
Letp>2beaprime.Forh=(h1,...hr 1)∈(Z/pZ)r 1,wede neNr(h,p)tobethenumberofsolutionsinsquaresyimodp(includingyi=0)ofthesystem
(4.1)yi yi+1=himodp,1≤i≤r 1
Thisnumberdependscruciallyonthenumberofdistinctyj.Foreachh=(h1,...,hr 1),wede nereff(h)tobethenumberofdistinctyj(notnecessarilysquares)satisfyingthesystem(4.1).Sincethesolu-tionsofthehomogeneoussystemyi yi+1=0modparespannedby(1,...,1),reff(h)iswell-de ned(independentoftheparticularsolu-tionyof(4.1)).
Wede nerootsσij(h),1≤i<j≤rby
(4.2)σij(h)=j 1
k=ihk
1sothatσi,i+1(h)=hi,σij=j
k=iσk,k+1.Thesolutionsof(4.1)areall
distinctofandonlyifσij(h)=0,foralli<j,since
yi yj=j 1
k=iyk yk+1=j 1 k=ihk=σij(h)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(12)全文阅读和word下载服务。
相关推荐: