6.1.Thecasecdisc(G)>s.Weusea(h,c) c1/2+ (5.1),and (h,c) c toseethatthistermisboundedby
s 1 |λ(G)|#{sC∩L(G)}c1/2+ (6.1)rω(q)2cqc|qsupp(G)|cdisc(G)>s
BytheLipschitzprinciple(Lemma16),
#{sC∩L(G)} vol(sC)+sr 2
disc(G)
andsincevol(sC)=sr 1vol(C),we ndthat
(6.2)sr 1
#{sC∩L(G)} +sr 2
disc(G)
Moreover,inorderthatsC∩L(G)= ,wewillseethatweneedsupp(G) sr(r 1)/2,sinceCdoesnotintersectthewalls.Thisisaconsequenceofthefollowingobservation:LetC Rr 1beaboundedconvexset.De ne
r 1 diam1(C)=max{|xk|:x∈C}
k=1
Notethatdiam1scaleslinearly:diam1(sC)=sdiam1(C)foralls>0.Lemma7.Ifsupp(G)>diam1(sC)r(r 1)/2thensC∩L(G)iscontainedinthewalls{h∈Rr 1:σij(h)=0forsomei<j}.
Proof.Letdij(G)betheproductoftheprimespsuchthatσijvanishesonH(p),i.e.sothat
σij(x)=0modpforallx∈L(G)
Thendij(G)|supp(G)andmoreoverweclaimthat:
disc(G)|dij(G)
i<j
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(23)全文阅读和word下载服务。
相关推荐: