Abstract. We study the distribution of spacings between squares modulo q, where q is square-free and highly composite, in the limit as the number of prime factors of q goes to infinity. We show that all correlation functions are Poissonian, which among oth
20¨KURLBERGANDZEEV´RUDNICKPAR
WebeginbynotingthatthenumberofGwithsupp(G)=gisO(g ),i.e.,
(6.6)1 g ,
supp(G)=g
Sincewesumoversupp(G) sr(r 1)/2in(6.5),wehavesupp(G) s ,andthus(6.5)isboundedby1 1/2+ csc|q
g sr(r 1)/2g|qg s 1+ c|qc 1/2+
g sr(r 1)/2g|q1.
ByLemma18,thenumberofdivisorsofq/cwhicharelessthansr(r 1)/2isatmosts ,sothistermisboundedby
1+ sc 1/2+ .
c|q
Since
c|qc 1/2+ =(1+p|qp ) (1+1) s1/2 1p|q
thecontributionof(6.5)isatmostO(s 1+ ).
Itnowremainstobound(6.4).We rstconsiderthetermsforwhichcsupp(G)>s.Now,disc(G)≥supp(G),soifcsupp(G)>sthencertainlycdisc(G)>s,andsumofthecorrespondingtermsin(6.4)isboundedby1 1/2+ csc|q supp(G)|q
csupp(G)>ssupp(G) ssupp(G)
1,1 gq= c|qc 1/2+ g|cg>s 11 qg supp(G)=g1 c|qc 1/2+ g|cg>sby(6.6).Changingvariabletod=cg,whichisadivisorofqsatisfyingd>s,thisisboundedby
c 1/2+ 1 =c1/2+
1 1 (d/c)dd|qc|d
d>sd|qd>sc|d
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(25)全文阅读和word下载服务。
相关推荐: