Abstract. We study the distribution of spacings between squares modulo q, where q is square-free and highly composite, in the limit as the number of prime factors of q goes to infinity. We show that all correlation functions are Poissonian, which among oth
6¨KURLBERGANDZEEV´RUDNICKPAR
2.Thepaircorrelation-asketch
Inordertoexplaintheproofofourmaintheorem1,wegiveanoverviewoftheargumentinthespecialcaseofthepaircorrelationfunction.
Letqbeanodd,square-freenumberwithω(q)primefactors,andIaninterval,notcontainingtheorigin.De neasintheintroductionthepaircorrelationfunction
1 R2(I,q)=N(h,q)Nh∈sI∩Z
ω(q)whereNisthenumberofsquaresmoduloq,s=q/N=2/σ 1(q) 1istheirmeanspacing,σ 1(q)=p|q(1+),andN(h,q)isthenumber
ofsolutionsinsquaresmoduloqoftheequation
y1 y2=hmodq
WewillsketchaproofthatR2(I,q)→|I|asω(q)→∞(|I|beingthelengthoftheinterval).InfactwehavethemorepreciseresultTheorem3.Forqodd,square-freewehaveforall >0
R2(I,q)=|I|+O(s 1+ )
Herearethemainstepsintheargument:
Step1: BytheChineseRemainderTheorem,N(h,q)=p|qN(h,p)isaproductoverprimesdividingq.Byelementaryconsiderations,oneseesthat
p+a(h,p)(2.1)N(h,p)= (h,p)4
witha(h,p)=O(1)and 0p|h (h,p)=1+δ(h,p),δ(h,p)=1p|h
q (h,q) a(h,c)(2.2)N(h,q)=4ω(q)cc|q witha(h,c):=p|ca(h,p) c and (h,q)=p|q (h,p).
Step2:
Wedecompose (h,q)= (h,c) (h,q)andrewrite (h,q)ascc q (h,)=(1+δ(h,p))=δ(h,g)cqqp|g|Fromthisweseethat
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(7)全文阅读和word下载服务。
相关推荐: