第一范文网 - 专业文章范例文档资料分享平台

The distribution of spacings between quadratic residues(7)

来源:用户分享 时间:2021-06-02 本文由仅是祈愿 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Abstract. We study the distribution of spacings between squares modulo q, where q is square-free and highly composite, in the limit as the number of prime factors of q goes to infinity. We show that all correlation functions are Poissonian, which among oth

6¨KURLBERGANDZEEV´RUDNICKPAR

2.Thepaircorrelation-asketch

Inordertoexplaintheproofofourmaintheorem1,wegiveanoverviewoftheargumentinthespecialcaseofthepaircorrelationfunction.

Letqbeanodd,square-freenumberwithω(q)primefactors,andIaninterval,notcontainingtheorigin.De neasintheintroductionthepaircorrelationfunction

1 R2(I,q)=N(h,q)Nh∈sI∩Z

ω(q)whereNisthenumberofsquaresmoduloq,s=q/N=2/σ 1(q) 1istheirmeanspacing,σ 1(q)=p|q(1+),andN(h,q)isthenumber

ofsolutionsinsquaresmoduloqoftheequation

y1 y2=hmodq

WewillsketchaproofthatR2(I,q)→|I|asω(q)→∞(|I|beingthelengthoftheinterval).InfactwehavethemorepreciseresultTheorem3.Forqodd,square-freewehaveforall >0

R2(I,q)=|I|+O(s 1+ )

Herearethemainstepsintheargument:

Step1: BytheChineseRemainderTheorem,N(h,q)=p|qN(h,p)isaproductoverprimesdividingq.Byelementaryconsiderations,oneseesthat

p+a(h,p)(2.1)N(h,p)= (h,p)4

witha(h,p)=O(1)and 0p|h (h,p)=1+δ(h,p),δ(h,p)=1p|h

q (h,q) a(h,c)(2.2)N(h,q)=4ω(q)cc|q witha(h,c):=p|ca(h,p) c and (h,q)=p|q (h,p).

Step2:

Wedecompose (h,q)= (h,c) (h,q)andrewrite (h,q)ascc q (h,)=(1+δ(h,p))=δ(h,g)cqqp|g|Fromthisweseethat

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证The distribution of spacings between quadratic residues(7)全文阅读和word下载服务。

The distribution of spacings between quadratic residues(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1207479.html(转载请注明文章来源)

相关推荐:

热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top