º¯ÊýÂÛÓë²â¶È(ʵ±äº¯ÊýÂÛ)ÊǸߵÈʦ·¶ÔºÐ£ÊýѧרҵµÄÒ»ÃűØÐ޿γÌ,ËüÊÇÆÕͨ΢»ý·ÖѧµÄ¼ÌÐø,ÊÇÏÖ´ú·ÖÎöÊýѧµÄ»ù´¡¡£±¾¿Î³ÌµÄÖ÷ÒªÄÚÈÝÊÇnάŷÊϿռäÉϵÄLebesgue ²â¶ÈºÍLebesgue»ý·ÖÀíÂÛ¡£½ÌѧÖÐҪͻ³öLebesgue ²â¶ÈÓë»ý·ÖÂÛµÄÖÐÐĵØÎ»,ʹѧÉú½ÏºÃµØÕÆÎÕ²â¶ÈÓë»ý·ÖÕâÁ½¸ö»ù±¾·ÖÎö¹¤¾ß,ÄÜÊìϤ¼¯ºÏ·Ö½âµÈ»ù±¾·½·¨¡£Í¨¹ýѧϰ,ʹѧÉúÕÆÎÕһЩ½ü´ú³éÏó·ÖÎöµÄ»ù±¾Ë¼Ïë,¼ÓÉî¶ÔÊýѧ·ÖÎöÖÐÏà¹ØÄÚÈݵÄÀí½â;ÕÆÎÕʵ±äº¯ÊýµÄ»ù±¾ÀíÂۺͷ½·¨
M(x) supfn(x)£»m(x) inffn(x)£¬x E
n
n
¶¨Àí4.1.5 EÉϿɲ⺯ÊýÁÐ{fn(x)}µÄÉÏÈ·½çº¯ÊýM(x)ºÍÏÂÈ·½çº¯Êým(x)¶¼Êǿɲ⺯Êý.
Ö¤Ã÷ ¶ÔÈÎÒâµÄʵÊýa£¬ÓÉÓÚE[M a]
E[f
n 1
n
a]£¬E[m a] E[fn a]. Ëù
n 1
ÒÔE[M a]ºÍE[m a]¶¼Êǿɲ⼯£¬Òò¶øM(x)ºÍm(x)¶¼ÊÇEÉϵĿɲ⺯Êý.
¶¨Àí4.1.6 Éè{fn(x)}ÊÇEÉϿɲ⺯ÊýÁУ¬ÔòF(x) fn(x)ºÍG(x) limfn(x)Ò²
n
n
ÊÇEÉϵĿɲ⺯Êý.
Èç¹ûlimfn(x) limfn(x) limfn(x) f(x)£¬Ôò¼«ÏÞº¯Êýf(x)ÊÇEÉϵĿɲ⺯Êý.
n
n
n
Ö¤Ã÷ ÓÉÓÚlimfn(x) sup(inffm(x))£¬limfn(x) inf(supfm(x)).
n
n
m n
n n
m n
Óɶ¨Àí4.1.5£¬{mn(x)} {inffm(x)}Êǿɲ⺯ÊýÁУ¬ÔÙÓɶ¨Àí4.1.5£¬
m n
F(x) fn(x) sup{mn(x)}ÊÇEÉϵĿɲ⺯Êý.
n
n
ͬÀí¿ÉÖ¤G(x) limfn(x)ÊÇEÉϵĿɲ⺯Êý.
n
Éèf(x)ÊÇEÉϵÄʵº¯Êý£¬Áî
f(x),x E[f 0];
f(x) max{f(x),0}
x E[f 0].0,
x E[f 0]; 0,
f (x) max{ f(x),0}
x E[f 0]. f(x),
Ôòf (x)ºÍf (x)¶¼ÊÇEÉϵķǸºº¯Êý£¬·Ö±ð³ÆÎªf(x)µÄÕý²¿ºÍ¸º²¿. ÏÔÈ»
f(x) f (x) f (x)£¬|f(x)| f (x) f (x).
µ±f(x)ÔÚEÉϿɲâʱ£¬f(x)ºÍf(x)Ò²ÔÚEÉϿɲâ.
ÔÚʵ±äº¯ÊýÖУ¬¾³£Óöµ½¡°¼¸ºõ´¦´¦¡±µÄ¸ÅÄî.
¶¨Òå4.1.5 ÉèEÊǿɲ⼯£¬P(x)ÊÇÒ»¸öºÍEÖеĵãxÓйصÄÃüÌâ.
Èç¹û³ýÁËEµÄÒ»¸öÁã²â¶È¼¯ÍâP(x)´¦´¦³ÉÁ¢£¬Ôò³ÆP(x)ÔÚEÉϼ¸ºõ´¦´¦³ÉÁ¢. ¼ÇΪ
ËÑË÷¡°diyifanwen.net¡±»ò¡°µÚÒ»·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬µÚÒ»·¶ÎÄÍø£¬Ìṩ×îÐÂ×ʸñ¿¼ÊÔÈÏ֤ʵ±äº¯ÊýÂ۽̰¸µÚËÄÕÂ(8)È«ÎÄÔĶÁºÍwordÏÂÔØ·þÎñ¡£
Ïà¹ØÍÆ¼ö£º