º¯ÊýÂÛÓë²â¶È(ʵ±äº¯ÊýÂÛ)ÊǸߵÈʦ·¶ÔºÐ£ÊýѧרҵµÄÒ»ÃűØÐ޿γÌ,ËüÊÇÆÕͨ΢»ý·ÖѧµÄ¼ÌÐø,ÊÇÏÖ´ú·ÖÎöÊýѧµÄ»ù´¡¡£±¾¿Î³ÌµÄÖ÷ÒªÄÚÈÝÊÇnάŷÊϿռäÉϵÄLebesgue ²â¶ÈºÍLebesgue»ý·ÖÀíÂÛ¡£½ÌѧÖÐҪͻ³öLebesgue ²â¶ÈÓë»ý·ÖÂÛµÄÖÐÐĵØÎ»,ʹѧÉú½ÏºÃµØÕÆÎÕ²â¶ÈÓë»ý·ÖÕâÁ½¸ö»ù±¾·ÖÎö¹¤¾ß,ÄÜÊìϤ¼¯ºÏ·Ö½âµÈ»ù±¾·½·¨¡£Í¨¹ýѧϰ,ʹѧÉúÕÆÎÕһЩ½ü´ú³éÏó·ÖÎöµÄ»ù±¾Ë¼Ïë,¼ÓÉî¶ÔÊýѧ·ÖÎöÖÐÏà¹ØÄÚÈݵÄÀí½â;ÕÆÎÕʵ±äº¯ÊýµÄ»ù±¾ÀíÂۺͷ½·¨
1 E[g ] E[g 0],Èôa 0; a
11
E[ a] E[g 0] E[g ], Èô a 0; ga
E[g 0] E[g ]Èôa 0.
Êǿɲ⼯£¬ËùÒÔ
1f1f
Êǿɲ⺯Êý£¬¶ø f £¬ÓÉ£¨3£©ÊÇEÉϵĿɲ⺯Êý. gggg
£¨5£©¶ÔÈÎÒâµÄʵÊýa£¬
E[f a] [f a],a 0;
E[|f| a]
E,a 0.
Êǿɲ⼯£¬ËùÒÔ|f(x)|ÊÇEÉϵĿɲ⺯Êý.
n
¶¨Òå4.1.3 ÉèE RÊǿɲ⼯£¬E1,E2, ,EmÊÇEµÄ»¥²»ÏཻµÄ¿É²â×Ó¼¯£¬ÇÒ
E
i 1
m
i
E£¬C1,C2, ,CmÊdz£Êý£¬Ôò³ÆEÉϵĺ¯Êý (x) Ci£¬x Ei£¬i 1,2, ,m,ÊÇE
Éϵļòµ¥º¯Êý.
ÏÔÈ»ÓÐ (x)
C
ii 1
n
m
Ei
(x). ÆäÖÐ Ei(x)ÊÇEiµÄÌØÕ÷º¯Êý.
Àý6 ¿É²â¼¯E RÉϵļòµ¥º¯Êý (x)Êǿɲ⺯Êý.
Ö¤Ã÷ Éè (x)ÊÇE RÉϵļòµ¥º¯Êý£¬ (x) Ci£¬x Ei£¬i 1,2, ,m. ¶Ôÿһ¸ö
n
1 i m£¬ (x)ÔÚEiÉÏÊdz£Êýº¯Êý£¬Òò¶øÁ¬Ðø£¬ËùÒԿɲâ. ¼´ (x)ÔÚÿһ¸öEi(1 i m)
É϶¼¿É²â£¬Óɶ¨Àí4.1.2µÄ£¨ii£©£¬ (x)ÔÚE
ÏÂÃæÌÖÂۿɲ⺯ÊýÁеļ«ÏÞÔËËã.
¶¨Òå Éè{fn(x)}ÊÇEÉϵĿɲ⺯ÊýÁÐ. ÈÎÈ¡x0 E£¬Áî
EÉϿɲâ.
ii 1
n
M(x0) sup{f1(x0),f2(x0), ,fn(x0), }£» m(x0) inf{f1(x0),f2(x0), ,fn(x0), }.
³ÆEÉϵĺ¯ÊýM(x)ºÍm(x)·Ö±ðΪ{fn(x)}µÄÉÏÈ·½çº¯ÊýºÍÏÂÈ·½çº¯Êý£¬¼ÇΪ
ËÑË÷¡°diyifanwen.net¡±»ò¡°µÚÒ»·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬µÚÒ»·¶ÎÄÍø£¬Ìṩ×îÐÂ×ʸñ¿¼ÊÔÈÏ֤ʵ±äº¯ÊýÂ۽̰¸µÚËÄÕÂ(7)È«ÎÄÔĶÁºÍwordÏÂÔØ·þÎñ¡£
Ïà¹ØÍÆ¼ö£º