º¯ÊýÂÛÓë²â¶È(ʵ±äº¯ÊýÂÛ)ÊǸߵÈʦ·¶ÔºÐ£ÊýѧרҵµÄÒ»ÃűØÐ޿γÌ,ËüÊÇÆÕͨ΢»ý·ÖѧµÄ¼ÌÐø,ÊÇÏÖ´ú·ÖÎöÊýѧµÄ»ù´¡¡£±¾¿Î³ÌµÄÖ÷ÒªÄÚÈÝÊÇnάŷÊϿռäÉϵÄLebesgue ²â¶ÈºÍLebesgue»ý·ÖÀíÂÛ¡£½ÌѧÖÐҪͻ³öLebesgue ²â¶ÈÓë»ý·ÖÂÛµÄÖÐÐĵØÎ»,ʹѧÉú½ÏºÃµØÕÆÎÕ²â¶ÈÓë»ý·ÖÕâÁ½¸ö»ù±¾·ÖÎö¹¤¾ß,ÄÜÊìϤ¼¯ºÏ·Ö½âµÈ»ù±¾·½·¨¡£Í¨¹ýѧϰ,ʹѧÉúÕÆÎÕһЩ½ü´ú³éÏó·ÖÎöµÄ»ù±¾Ë¼Ïë,¼ÓÉî¶ÔÊýѧ·ÖÎöÖÐÏà¹ØÄÚÈݵÄÀí½â;ÕÆÎÕʵ±äº¯ÊýµÄ»ù±¾ÀíÂۺͷ½·¨
£¨ii£©lim n(t) t.
n
[2nt]2[2nt][2n 1t]
ÊÂʵÉÏ£¬Èôt n£¬Ôò n(t) n n 1 n 1 n 1(t)£»
2222n 1[t][2n 1t]
Èôn t n 1£¬Ôò n(t) n n 1 n 1 n 1(t)£»
22
Èôt n 1£¬Ôò n(t) n n 1 n 1(t). £¨i£©µÃÖ¤.
Èç¹ût £¬Ôò n(t) n (n )£»
Èç¹û0 t £¬ÄÇô´æÔÚÕýÕûÊýN£¬Ê¹µÃN t£¬´Ó¶øµ±n Nʱ£¬
[2nt][2nt] 2nt1
| n(t) t| n t 0(n )£¬ nn
222
ËùÒÔlim n(t) t. £¨ii£©µÃÖ¤.
n
k 1 k kn
n,µ±x E n f(x) n £¬k 0,1, ,n 2 1£»
Áî n(x) n(f(x)) 2 2 2
n,µ±x E[f n].
ÓÉÓÚf(x) 0£¬ÓÉ nµÄ¶¨ÒåÖª n(x)ΪEÉϵļòµ¥º¯Êý£¬ÇÒÓÉ nµÄÐÔÖÊ£¨i£©Ó루ii£©ÓÐ
n(x) n 1(x)(n 1,2, )¼°lim n(x) lim n(f(x)) f(x).
n
n
£¨2£©Ò»°ãÇéÐÎ
¶ÔÓÚÒ»°ãµÄ¿É²âº¯Êýf(x)£¬f(x) f (x) f (x).
ÒòΪf(x)ºÍf(x)ÊÇEÉϵķǸº¿É²âº¯Êý£¬ÓÉ£¨1£©Öª´æÔڷǸºµÝÔö¼òµ¥º¯ÊýÁÐ{ n(x)}
ºÍ{ n(x)}£¬Ê¹lim n(x) f(x)£¬lim n(x) f(x). ÏÔÈ»ÓÐ
n
n
E[ n 0] E[f 0]£¬E[ n 0] E[f 0].
ÒòΪE[f 0] E[f
0 ] £¬ËùÒÔE[ n 0] E [n 0 ] . Òò´Ë n(x)ºÍ
Ôò n(x)ÊÇEÉϵļòµ¥º¯ n(x)¿ÉÒÔ×÷Ϊij¸öº¯ÊýµÄÕý²¿ºÍ¸º²¿. Éè n(x) n(x) n(x)£¬
Êý£¬ÇÒ¶ÔÒ»ÇÐÕýÕûÊýn£¬ÓÐ
ËÑË÷¡°diyifanwen.net¡±»ò¡°µÚÒ»·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬µÚÒ»·¶ÎÄÍø£¬Ìṩ×îÐÂ×ʸñ¿¼ÊÔÈÏ֤ʵ±äº¯ÊýÂ۽̰¸µÚËÄÕÂ(13)È«ÎÄÔĶÁºÍwordÏÂÔØ·þÎñ¡£
Ïà¹ØÍÆ¼ö£º