º¯ÊýÂÛÓë²â¶È(ʵ±äº¯ÊýÂÛ)ÊǸߵÈʦ·¶ÔºÐ£ÊýѧרҵµÄÒ»ÃűØÐ޿γÌ,ËüÊÇÆÕͨ΢»ý·ÖѧµÄ¼ÌÐø,ÊÇÏÖ´ú·ÖÎöÊýѧµÄ»ù´¡¡£±¾¿Î³ÌµÄÖ÷ÒªÄÚÈÝÊÇnάŷÊϿռäÉϵÄLebesgue ²â¶ÈºÍLebesgue»ý·ÖÀíÂÛ¡£½ÌѧÖÐҪͻ³öLebesgue ²â¶ÈÓë»ý·ÖÂÛµÄÖÐÐĵØÎ»,ʹѧÉú½ÏºÃµØÕÆÎÕ²â¶ÈÓë»ý·ÖÕâÁ½¸ö»ù±¾·ÖÎö¹¤¾ß,ÄÜÊìϤ¼¯ºÏ·Ö½âµÈ»ù±¾·½·¨¡£Í¨¹ýѧϰ,ʹѧÉúÕÆÎÕһЩ½ü´ú³éÏó·ÖÎöµÄ»ù±¾Ë¼Ïë,¼ÓÉî¶ÔÊýѧ·ÖÎöÖÐÏà¹ØÄÚÈݵÄÀí½â;ÕÆÎÕʵ±äº¯ÊýµÄ»ù±¾ÀíÂۺͷ½·¨
¶ø( ) ( )£¬( ) ( )£¬( ) ( )£¬( ) ( )ÈÏΪÊÇûÓÐÒâÒåµÄ. 0 ( )ÔÚÒ»°ãÇé¿öÏ£¬Ò²ÊDz»ÔÊÐíµÄ.
£¬£¬£¬
¶¨Òå4.1.1 Éèf(x)ÊǶ¨ÒåÔڿɲ⼯E RÉϵĺ¯Êý£¬Èç¹û¶ÔÈκÎÓÐÏÞʵÊýa£¬
n
E[f a] {x:x E,f(x) a}¶¼Êǿɲ⼯£¬Ôò³Æf(x)Ϊ¶¨ÒåÔÚEÉϵĿɲ⺯Êý£¬»òÕß˵£¬f(x)ÔÚEÉϿɲâ.
Àý1 Çø¼ä[a,b]ÉϵÄÁ¬Ðøº¯Êý¼°µ¥µ÷º¯Êý¶¼Êǿɲ⺯Êý.
Ö¤Ã÷ Èôf(x)ÊÇ[a,b]ÉϵÄÁ¬Ðøº¯Êý£¬¶ÔÈÎÒâµÄʵÊýc£¬ÍùÖ¤{x:f(x) c}ÊÇ¿ª¼¯£¬ÈÎÈ¡x0 {x:f(x) c}£¬Ôòf(x0) c£¬ÓÉÁ¬Ðøº¯ÊýµÄ±£ºÅÐÔÖª£¬´æÔÚ 0£¬Ê¹µÃµ±
c}. ËùÒÔx0ÊÇx (x0 ,x0 )ʱ£¬ÓÐf(x) c£¬ËùÒÔ(x0 ,x0 ) {x:f(x)
{x:f(x) c}µÄÄÚµã. Òò´Ë{x:f(x) c}ÊÇ¿ª¼¯. ´Ó¶ø{x:f(x) c}Êǿɲ⼯£¬ÓÚÊÇf(x)ÔÚEÉϿɲâ.
Èôf(x)ÊÇ[a,b]Éϵĵ¥µ÷º¯Êý£¬²»·ÁÉèf(x)ÊÇ[a,b]Éϵĵ¥µ÷Ôö¼Óº¯Êý£¬¶ÔÈÎÒâµÄʵÊýc. µ±f(b) cʱ£¬{x:f(x) c}Êǿռ¯ £¬Òò¶øÊǿɲ⼯£» µ±c f(a)ʱ£¬{x:f(x) c} [a,b]£¬Ò²Êǿɲ⼯. Èôf(a) c f(b)ʱ£¬Áîx0 inf{x:f(x) c}£¬Ôò µ±f(x0) cʱ£¬{x:f(x) c} [x0,b]£» µ±f(x0) cʱ£¬{x:f(x) c} (x0,b].
Òò´Ë£¬µ±f(a) c f(b)ʱ£¬{x:f(x) c}Ò²Êǿɲ⼯. ×ÛºÏÒÔÉÏ£¬f(x)ÊÇ[a,b]ÉϵĿɲ⺯Êý.
¶¨Àí4.1.1 Éèf(x)Êǿɲ⼯E RÉϵĺ¯Êý£¬Ôò£¨i£©£¬£¨ii£©£¬£¨iii£©£¬£¨iv£©Êǵȼ۵Ä. £¨i£©fÊÇEÉϵĿɲ⺯Êý£»
£¨ii£©¶ÔÈκÎʵÊýa£¬E[f a]Êǿɲ⼯£»
n
ËÑË÷¡°diyifanwen.net¡±»ò¡°µÚÒ»·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬µÚÒ»·¶ÎÄÍø£¬Ìṩ×îÐÂ×ʸñ¿¼ÊÔÈÏ֤ʵ±äº¯ÊýÂ۽̰¸µÚËÄÕÂ(2)È«ÎÄÔĶÁºÍwordÏÂÔØ·þÎñ¡£
Ïà¹ØÍÆ¼ö£º