A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
arXiv:math/0209099v1 [math.DG] 10 Sep 2002GeneralizedCalabi-YaumanifoldsNigelHitchinMathematicalInstitute24-29StGilesOxfordOX13LBUKhitchin@maths.ox.ac.ukFebruary1,2008AbstractAgeometricalstructureoneven-dimensionalmanifoldsisde nedwhichgener-alizesthenotionofaCalabi-Yaumanifoldandalsoasymplecticmanifold.Suchstructuresareofeitheroddoreventypeandcanbetransformedbytheactionofbothdi eomorphismsandclosed2-forms.Inthespecialcaseofsixdimen-sionswecharacterizethemascriticalpointsofanaturalvariationalproblemonclosedforms,andprovethatalocalmodulispaceisprovidedbyanopensetineithertheoddorevencohomology.1Introduction
WeintroduceinthispaperageometricalstructureonamanifoldwhichgeneralizesboththeconceptofaCalabi-Yaumanifold–acomplexmanifoldwithtrivialcanonicalbundle–andthatofasymplecticmanifold.Thisispossiblyausefulsettingforthebackgroundgeometryofrecentdevelopmentsinstringtheory,butthiswasnottheoriginalmotivationfortheauthor’s rstencounterwiththisstructure:itaroseinsteadaspartofaprogramme(followingthepapersforcharacterizingspecialgeometryinlowdimensionsbymeansofinvariantfunctionalsofdi erentialforms.Inthisrespect,thedimensionsixisparticularlyimportant.Thispaperhastwo
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds全文阅读和word下载服务。
相关推荐: