A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
thederivativeDX:U→EndSde nesanintegrablealmostcomplexstructureJonU
Proof:Sinceiφ(ρ)= , ¯ ,di erentiatingalongacurveinU,
˙= ,˙ .iφ˙ ¯ + , ¯
Uptoascalar,thepurespinorsformanorbit,soateachpoint
˙=c +σ(a)
forsomec∈Canda∈so(12,C).Butthen
,˙ =c , + σ(a) , =0(12)
wherethe rsttermiszerobecausethebilinearformisskewandthesecondbecause,aswesawabove,ing(12)
˙˙ = ,˙ =iφ. ,¯ ˙+ ¯˙ ¯ + , ¯
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(20)全文阅读和word下载服务。
相关推荐: