A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
aims,then: rsttointroducethegeneralconcept,andthentolookatthevariationalandmodulispaceprobleminthespecialcaseofsixdimensions.
Webeginwiththede nitioninalldimensionsofwhatwecallgeneralizedcomplexmanifoldsandgeneralizedCalabi-Yaumanifolds1.Therearetwonovelfeaturesin-volved.The rstistheuseoftheCourantbracket,ageneralizationoftheLiebracketonsectionsofthetangentbundleTtosectionsofthebundleT⊕T ,andwhichcomestousfromthestudyofconstrainedmechanicalsystems[7].ThesecondistheB- eld(thisistheterminologyofthephysicists,butitisassuredlythesamemathematicalobject).Itturnsoutthatthegeometrywedescribetransformsnaturallynotonlyunderthedi eomorphismgroup,butalsobytheactionofaclosed2-formB.
Tode neageneralizedcomplexmanifoldweimitateonede nitionofaK¨ahlerman-ifold.Insteadofaskingforthe(1,0)vectorstobede nedbyanisotropicsubbundleE T C,whosespaceofsectionsisclosedundertheLiebracket,weinsteadaskforasubbundleE (T⊕T ) C,isotropicwithrespecttotheinde nitemetriconT⊕T de nedbythenaturalpairingbetweenTandT ,andmoreoverwhosespaceofsectionsisclosedundertheCourantbracket.Forthede nitionofagen-eralizedCalabi-Yaumanifoldweasknotforaclosed(n,0)-form,butinsteadforaclosedcomplexform ofmixeddegreeandofacertainalgebraictype.ThistypeisobtainedbythinkingofaformasaspinorfortheorthogonalvectorbundleT⊕T andthenrequiringthespinortobepure.Thewell-knowncorrespondencebetweenmaximallyisotropicsubspacesandpurespinorsmeansthatsuchaformde nesasubbundleE (T⊕T ) CandweshowthatsectionsofEareclosedundertheCourantbracketifd =0.Therearetwoclassesofsuchstructures,dependingonwhetherthedegreeof isevenorodd.
Therearetwomotivatingexamples:anordinaryCalabi-Yaumanifoldandasym-plecticmanifold.ACalabi-Yaumanifoldwithholomorphic(n,0)form de nesageneralizedCalabi-Yaustructurebytaking = .Asymplecticmanifoldwithsymplecticformωde nesageneralizedCalabi-Yaustructurebytaking =expiω.Transformingwithaclosed2-formBmeansreplacing by(expB)∧ .Incertaincases,asweshallsee,theB- eldinterpolatesbetweensymplecticandCalabi-Yaustructures.
ThespecialroleofsixdimensionsarisesfromthefactthatthegroupR ×Spin(6,6)hasanopenorbitineitherofits32-dimensionalspinrepresentations.Moreoveraspinorinthisopensetistherealpartofacomplexpurespinor .Wecande nefromthisalgebraaninvariant“volume”functionalde nedonrealforms,andweconsidercriticalpointsofthisfunctionalontheclosedformsinacohomologyclass
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(2)全文阅读和word下载服务。
相关推荐: