A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
3.3Purespinors
Given ∈S±,weconsideritsannihilator,thevectorspace
E ={v+ξ∈V⊕V :(v+ξ)· =0}
Sincev+ξ∈E satis es
0=(v+ξ)·(v+ξ)· = (v+ξ,v+ξ)
weseethatv+ξisnullandsoE isisotropic.Aspinor forwhichE ismaximallyisotropic(i.e.hasdimensionequaltodimV)iscalledapurespinor.AnytwopurespinorsarerelatedbyanactionofSpin(V⊕V ).Tobepureisanon-linearconditionwhich,inhigherdimensions,isquitecomplicated.Herearesomeexamples:Examples:
1.Thespinor1∈Λ0V ΛevV ispure,since(v+ξ)·1=ξandsotheannihilatorisde nedbyξ=0,themaximalisotropicsubspaceV V⊕V
2.ApplyinganyelementofSpin(V⊕V )to1givesanotherpurespinor.InparticularwecanexponentiateB∈Λ2V sothat
expB=1+B+1
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(7)全文阅读和word下载服务。
相关推荐: