A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
ineithertheevenoroddpartofH (M,R)foracompact6-manifoldM.IftheylieintheopenorbitateachpointofM,thesecriticalpointsarepreciselygeneralizedCalabi-Yaumanifolds.Imitating[10]wethenshowthat,underacertaincondition,alocalmodulispaceforthesestructuresisanopensetinthecorrespondingcohomology¯-lemmaforgroupofevenorodddegree.Therequiredconditionisimpliedbythe
complexmanifoldsandthestrongLefschetztheoremforsymplecticones.Weshouldnotethatthisapproachforcesustoconsidertwostructurestobeequivalentiftheyarerelatednotjustbythegroupofdi eomorphismsisotopictotheidentity,butbyitsextensionbytheactionofexactB- elds.
Thereisaspecialpseudo-K¨ahlerstructureonthemodulispaceinducedasacon-sequenceofthisapproach.Intheevencaseitisthestructuredeterminedbytheintersectionform–“withoutquantumcorrections”inthephysicists’language.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(3)全文阅读和word下载服务。
相关推荐: