A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
6
6.1ThevariationalproblemThevolumefunctional
Wede nedabovethefunctionφonU Λev/odV (Λ6V)1/2.Untwistingbytheone-dimensionalvectorspace(Λ6V)1/2,thereisacorrespondingopenset,whichwestillcallU,inΛev/odV and,sinceφishomogeneousofdegree2,aninvariantfunction
φ:U→Λ6V .
ThebilinearsymplecticformnowtakesvaluesinΛ6V alsoandsothederivativeatρofφisalinearmapfromΛev/odV toΛ6V whichcanbewritten
Dφ(ρ˙)= ρ ,ρ˙ .(13)
SupposeMisacompactoriented6-manifold,andρisaform,eitheroddoreven,butingeneralofmixeddegree,whichliesateachpointofMintheopensubsetUdescribedabove.Following[11]weshallcallsuchaformstable.Wecanthende neavolumefunctional V(ρ)=φ(ρ).
M
Theorem6Aclosedstableformρ∈ ev/od(M)isacriticalpointofV(ρ)initscohomologyclassifandonlyifρ+iρ de nesageneralizedCalabi-YaustructureonM.
Proof:Takethe rstvariationofV(ρ):
δV(ρ˙)=Dφ(ρ˙)= ρ ,ρ˙
MM
from(13).Thevariationiswithina xedcohomologyclasssoρ˙=dα.Thus
δV(ρ˙)= ρ ,dα =σ( ρ)∧dα
MM
from(4).ByStokes’theoremthisis
±dσ( ρ)∧α=±σ(dρ )∧α=± dρ ,α
MMM
sincefromitsde nitionσcommuteswithd.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(23)全文阅读和word下载服务。
相关推荐: