A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
3.2Spinors
ConsidertheexterioralgebraΛ V andtheactionofv+ξ∈V⊕V onitde nedby
(v+ξ)· =ι(v) +ξ∧
Wehave
(v+ξ)2· =ι(v)(ξ∧ )+ξ∧ι(v) =(ι(v)ξ) = (v+ξ,v+ξ)
whichmakesΛ V intoamoduleovertheCli ordalgebraofV⊕V .Thisde nesthespinrepresentationofthegroupSpin(V⊕V )ifwetensorwiththeone-dimensionalspace(ΛnV)1/2.Splittingintoevenandoddformswethenhavethetwoirreduciblehalf-spinrepresentations:
S+=ΛevV (ΛnV)1/2
S =ΛodV (ΛnV)1/2
IfwenowtakeB∈Λ2V so(V⊕V ),thenexponentiatingBtoexpBintheLiegroupSpin(V⊕V )givesfrom(3)thefollowingactiononspinors:
expB( )=(1+B+1(3)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(6)全文阅读和word下载服务。
相关推荐: