第一范文网 - 专业文章范例文档资料分享平台

Generalized Calabi-Yau manifolds(22)

来源:用户分享 时间:2021-06-03 本文由霜标水月孤 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis

5.3ThecomplexstructureJ

ThecomplexstructureJonU Sturnsouttobeimportantinthesubsequentdevelopment.RecallthatUisahomogeneousspaceofSpin(6,6)×R underthespinrepresentation.Thisisalinearaction,soeverytangentvectortotheopensetUatρisoftheformσ(a)ρforsomeaintheLiealgebra.Weshow

Proposition5Onthetangentvectorσ(a)ρ,thecomplexstructureJisde nedby

J(σ(a)ρ)=σ(a) ρ.

Thusthe(0,1)vectorsareoftheformσ(a) whereρ= + ¯.

Proof:Asρvariesσ(a)ρde nesavector eldYonU.IfaisintheLiealgebraofSpin(6,6),thensinceφisinvariantandXistheHamiltonianvector eldofφ,wehave[X,Y]=0.ThecentralfactorR inthegroupactsbyrescaling,soifa∈Rthevector eldYistheEulervector eld–thepositionvectorρ.Nowφishomogeneousofdegree2butsoisthesymplecticform,andthismeansthat[X,Y]=0also.SinceJ=DXand[X,Y]=0,

J(Y)=DX(Y)=DY(X)=σ(a)X=σ(a) ρ

whichprovestheproposition.

AlthoughJisde nedonthevectorspaceS,itde nesacomplexstructureonthetensorproductofSwithanyvectorspaceandinparticularΛev/odV ,whichiswhereweshallmakeuseofit.

Examples:

1.TaketheCalabi-Yaucasewhere = isa(3,0)form.Thespaceof(0,1)-vectorsinΛodV CisfromProposition5theimageof undertheactionoftheLiealgebraso(12,C)+C,andusingthedecompositionso(V⊕V )=EndV⊕Λ2V ⊕Λ2V,thisisthe16-dimensionalspaceofΛodV Cgivenby

Λ3,0⊕Λ2,1⊕Λ3,2⊕Λ1,0.

2.Inthesymplecticcase =expiω,andweobtainforthe(0,1)vectorsthe16-dimensionalspaceofΛevV Cgivenby

expiωC⊕expiω(Λ2 C).

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Generalized Calabi-Yau manifolds(22)全文阅读和word下载服务。

Generalized Calabi-Yau manifolds(22).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1211790.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top