x c1cost c2sint
1
2
tcost 1
3
cos2t 习题5.1
1.给定方程组 x
‘
= 01 x1 -10
x x= x 2
(*)
a)
试
验
证
u(t)= cost sint ,v(t)= sint
cost 分别是方
程组(*)的满足初始条件u(0)= 1
0
0 , v(0)= 1
的解.
b)试验证w(t)=c1u(t)+c2v(t)是方程组(*)的满足初始条件
w(0)= c1
c 的解,其中c1,c2是任意
2
常数.
解:a) u(0)= cos0 1 sin0
=
0
u
'
(t)=
sint
cost
=
01 cost 01
10 sint 10
u(t) 又 v(0)= sino cos0 = 0
1
v
'
(t)= cost sint
= 01 sint 01
-10 cost = -10
v(t) 因此 u(t),v(t)分别是给定初值问题的解.
b) w(0)=c1u(0)+c2u(0)=
c 1
1 0 c1 0
+c2
1 = c 2
w'(t)= c1 u'(t)+ c2 v'(t)
=
c sint
+c 2 cost 1 cost
sint
= - c1sint c2cost c 1cost c
2sint =
01 -10 c1cost c2sint
c1sint c2cost
=
01
-10
w(t) 因此 w(t)是给定方程初值
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新经管营销常微分方程第三版课后答案(24)全文阅读和word下载服务。
相关推荐: