从对y1与y2的数据处理来看,我们可以将强化控制后的这段时间分为两个阶段:过渡期和平稳期;这两个阶段的产生是与非典自身的特性分不开的。由于非典具有潜伏期,所以在强化控制初期,由于前一段时间对非典的控制力度不够,造成较多的人处于非典潜伏期,这一部分人最终将转化为非典病人;且因为他们为自由带菌者,在被收治以前会传染较多的人;加之各项措施从颁布到实行总会有一段反应时间,所以上述原因直接导致了过渡期的形成,其特征为:y2较大,q(退出率)较小。(有关q的分析见对q数据处理)
3) q的计算公式=每天新增的治愈和死亡的人数 当天病人累计人数
以北京为例:
从q的原始数据(见附表5)中我们可以看出,q的值也存在阶段性。5.16日以前,q的值大概在1%左右摆动,不存在较大的波动;而5.16日以后,q的值基本都在1%以下。由于q的定义中包括了治愈率与死亡率两部分,在过渡期,由于发病人数较多,治愈率相对较低;当进入平稳期后,发病人数减少,治愈率必然增高。故这与我们上面对于过渡期和平稳期的假设是吻合的。
4) ——从数据可推算出其值在12%—30%之间我们在这里令 20%。
5) ——与城市的人口密度、生活习惯等因素有关,由于在强化控制阶段对人员的
流动控制的相当严格,还采取了比如封校、小区隔离、公共场合的关闭、减少聚
集活动等有效措施,故我们可估计 70%~90%
3.模型的求解:
很明显从我们建立的模型是无法得到s,i,r,y,m的解析解的。为了解决这个问题,我们求助于matlab中的龙格—库塔方法来求出它们的数值解。
我们先通过采集到的实际数据算出每一天的s,i,r,y,m,做出它们与时间的函数图象,然后画出我们通过模型解出的数值解随时间变化的图象。对比这两组图,可以发现实际和理论存在着一定的差异。这必然是因为我们的参数估计不合理造成的。所以,我们必须通过不断调整那些非计算得到的参数(λ2,ε,α)来使实际图象和理论图象趋于一致。
经过多次调试,我们发现,当λ2=0.71人,ε=0.2,α=0.8时,实际图象和理论图象有最好的符合。而这三个值均在我们估计的范围内,所以我们认为这三个值的得到是合理的。(matlab程序及画图结果附于论文后)
三. 各地疫情分析
北京地区
首先从已知数据看一下北京地区病人比率图(如下图10所示):
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高等教育2003年A题全国数学建模优秀论文1(11)全文阅读和word下载服务。
相关推荐: